If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x^2=-2
We move all terms to the left:
-10x^2-(-2)=0
We add all the numbers together, and all the variables
-10x^2+2=0
a = -10; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-10)·2
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-10}=\frac{0-4\sqrt{5}}{-20} =-\frac{4\sqrt{5}}{-20} =-\frac{\sqrt{5}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-10}=\frac{0+4\sqrt{5}}{-20} =\frac{4\sqrt{5}}{-20} =\frac{\sqrt{5}}{-5} $
| -6+2(1-7v)=26 | | 7x-54+180-8x=180 | | 1/5x-2=3/10x | | 4x-3=-57 | | 24÷100=n | | 15x+14=5x+134 | | 15=-9+3(a-4) | | 10h-h-7h+1=19 | | 2(x-20)+3x+(2(x-20)-150)+(4/5(2(x-20)-150))=1510 | | 2x-5=3x*3 | | 9.50=2x+5 | | 12+x=10+2 | | 8k+8k+-15k=-4 | | 0.75x-0.625x=44 | | -3x-3=11 | | 12+x=10+2x | | 84=-3(5x-3) | | 8k+8k+-15k=-4k | | 3^2y-1=8 | | 3j-2j+3=13 | | 8(7x-4)=19+2x | | .75x-5/8x=44 | | 38x–=543 | | -5h+8h=-18 | | 0=100/2x+x | | 4x+5=×+8 | | i=1/(3.6*45) | | 30a+5=5(+) | | 13v+6v-9v=10 | | 2/3x-12G=18 | | 3-(2x-5)=2x-8 | | 54-6v=3v |